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Today...

* Multi-task Learning
* Transfer Learning

* Meta Learning
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What is a task?
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More generally in machine learning, a
dataset-loss function pair defines a task.
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What’s wrong with single-task learning?
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What’s wrong with single-task learning?
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Still... Why multi-task learning?

We could just learn each task independently!
* What if we have little data for some tasks?

* What if we have little time to learn some tasks?
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Still... Why multi-task learning?

You should learn each task independently if there is no shared
structure between the tasks.
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Left: Playing atari with deep reinforcement learning
Mnih et al., NeurIPS Deep Learning Workshop 2013 CSCI 699: Robot Learning - Lecture 10 7
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Still... Why multi-task learning?

In real life, many tasks share structure!
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Today...

* Multi-task Learning
* Transfer Learning

* Meta Learning
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Today...

* Multi-task Learning: Learn multiple tasks together
* Transfer Learning

* Meta Learning
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Today...

* Multi-task Learning: Learn multiple tasks together
* Transfer Learning: Learn multiple tasks and transfer your

knowledge to a new one

* Meta Learning
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Today...

* Multi-task Learning: Learn multiple tasks together

* Transfer Learning: Learn multiple tasks and transfer your
knowledge to a new one

* Meta Learning: Learn multiple tasks such that adapting to a
new task will be easy
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Today...

* Multi-task Learning: Learn multiple tasks together
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Multi-task learning

Common solution:

1. Sample tasks from the task distribution P(7)

2. Compute their losses

3. Sum the losses (" How will ) ( What if the )

4. Backpropagate the model sum of

5. Go back to step 1 know which losses is not
 task todo? | | agood loss?,

CSCI 699: Robot Learning - Lecture 10 14



Parameter sharing

Task Al [Task B| [Task C| Task-
1 1 f specific
layers

Shared
; layers
An Overview of Multi-Task Learning in Deep Neural Networks CSCI 699: Robot Learning - Lecture 10 15

Ruder.io



From: Stanford CS330
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Extreme case: no parameter sharing
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Extreme case: full parameter sharing

64 filters
7%7 conv \ % 32 filters .
X stride 2 4, 9x4 conv
ReLU RelLU

Concatenate z; with input and/or activations
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Multiplicative coding

Conditional scaling first maps the
conditioning representation to a
scaling vector,

conditioning
representation

linear
T

I'he scaling vector is then multipliec

v with the input

input output

v
®
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Feature-wise transformations CSCI 699: Robot Learning - Lecture 10 18
Dumoulin et al., Distill 2018



Concatenation-based coding

Concatenation-based conditioning

conditioning . L
4 simply concatenates the conditioning

representation ) . conditioning
representation to the input.

Conditional biasing first maps
the conditioning representation

L 4
linear
k

Z l representation 1o & bias vactor.
— ~— The result is passed ZI
" through a linear layer
] N to produce the autput.
T} m I
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These are the same!
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There is no right way

From: Stanford CS330
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Cross-Stitch Networks. Misra, Shrivastava, Gupta, Hebert'16
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Deep Relation Networks. Long, Wang ‘15
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Multi-Task Attention Network. Liu, Johns, Davison ‘18
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Multi-task learning

Common solution:

1. Sample tasks from the task distribution P(7)

2. Compute their losses

3. Sum the losses (" How will ) ( What if the )

4. Backpropagate the model sum of

5. Go back to step 1 know which losses is not
 task to do?_| '\ a good loss?,

]
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Multi-task learning

Common solution:

Compute their losses

Sum the losses w/ some weights
Backpropagate

Go back to step 1

g1 = =

Popular heuristic: try to make
gradients have similar magnitude

Sample tasks from the task distribution P(7)

4 How will
the model

know which
\task to do .

\
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Multi-task learning

Common solution:

1. Sample tasks from the task distribution P(7)

2. Compute their losses

3. Take the maximum of the losses " 15w will )\ ( What if the
4. Backpropagate the model sum of

5. Go back to step 1 know which losses is not

task to do~ a 200d loss?
\_ ~\°8 ¢>
@
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Common problems

* Negative transfer

Left: Playing atari with deep reinforcement learning
Mnih et al., NeurIPS Deep Learning Workshop 2013 CSCI 699: Robot Learning - Lecture 10
Right: Windy.com Community

You should share less
between the tasks.

How?
* Fewer parameters
* Soft-sharing

24




Soft-sharing

Do not constrain the model to have the same parameters for
different tasks.

Instead, penalize the model based on how different their
parameters are.
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Common problems

* Overfitting
Perhaps, you have little data for some of the tasks.

You should share more between the tasks.
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Can we share based on task similarity!

Yes!

But what is task similarity?

CSCI 699: Robot Learning - Lecture 10 27



Today...

* Transfer Learning: Learn multiple tasks and transfer your
knowledge to a new one

CSCI 699: Robot Learning - Lecture 10 28



Transfer learning

Training: Have access to tasks 74, 75, ..., T, but not 7,,, 1.

Transfer: Have access to task 7,,,1, but not 74, 7,, ..., 7,,.
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Transfer learning

Common solution:

Training:

1. Run your favorite (multi-task) learning algorithm on 74, 75, ..., Tp,
Transfer:

2. Fine-tune the model on 1,44

This is the idea behind using ImageNet features or BERT embeddings!
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Transfer learning

Finetuning M Finetuning Finetuning Finetuning
dataset dataset dataset dataset

"

\ Age. performance = 72.31% / \ Agg. performance = 81.35% _/ \_ Agg. performance = 80.96% _/

Downstream datasets make surprisingly good pretraining corpora 5[ 599: Robot Learning - Lecture 10 31
Krishna et al., ACL 2023



Transfer learning

Common solution:

Training:

1. Run your favorite (multi-task) learning algorithm on 74, 75, ..., Tp,
Transfer:

2. Fine-tune the model on 1,44

Fine-tune
what?
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Fine-tune what?

It depends.

Input-Level Shift: CIFAR-C Feature-Level Shift: Entity-30 Output-Level Shift: CelebA
Image corruption Subgroup shift Spurious correlation

7 4 AR ,
4 ‘ A \' f
Source data . ?// 9 Al
gr ‘ 8
v | {4 |
Target data S ,-si | 3
AT . @
Full Fine-Tuning 79.9% 79.3% 82.2%
Surgical Fine-Tuning 82.8% (+2.9) 81.2% (+2.1) 86.2%(+4.0)
First block Middle/later block Last layer
Surgical fine-tuning improves adaptation to distribution shifts CSCI 699: Robot Learning - Lecture 10 33

Lee et al., ICLR 2023



Fine-tune what?

A good default:

Randomly O Backprop nitialize Q Backprop
initialized

50 Lo 30

Frozen Features

OO0 OO0

Slide: Chelsea Finn (Stanford)

Image: Fine-Tuning can distort pretrained features

and underperform out-of-distribution CSCI 699: Robot Learning - Lecture 10 34
Kumar et al., ICLR 2022



Transfer learning

What if our dataset on the target set is so small that even transfer
learning does not help?
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Today...

* Meta Learning: Learn multiple tasks such that adapting to a
new task will be easy
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Meta-learning

meta-training

"a
;.

training

classes

meta-testing

From: Stanford CS330

ﬁest

training data D;.in test set Xtest
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Meta-learning

Training: Have access to tasks 74, 75, ..., T, but not 7,,, 1.

Transfer: Have access to task 7,,,1, but not 74, 7,, ..., 7,,.

Assumption:
Tn4+1 cOomes from the same task distribution as 74, 75, ..., T5.
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Black-box adaptation

* Design a giant neural network that takes the datasets as the
input and outputs the parameters of a smaller network.

™~

Yes, I really said this.

But sometimes we can get away
with lower dimensional vectors.

* The smaller network performs the task 7,,,.
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Optimization-based adaptation

Learn a model such that when we take one (or some) gradient
step in task 7,44, it will perform good.

n
mini@mizez L(H — anL(Q;Tfr):Tfs)
i=1
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Optimization-based adaptation

1. Sample task T;
2. Compute ¢ « 0 — VgL(0,7}")
3. Update 0 using VgL(¢,tf5) —

Note we will need the second gradient!

From: Stanford CS330 CSCI 699: Robot Learning - Lecture 10 41



Next time...

Week 11 Safe and robust learning 31" Project Milestone Report
Fri, Nov 3 Multi-agent learning * Jeon et al., Shared Autonomy with Learned Latent Actions (2020).

¢ Sui et al., Safe Exploration for Optimization with Gaussian Processes (2015).
e Achiam et al., Constrained Policy Optimization (2017).

* Robey et al., Learning Control Barrier Functions from Expert Demonstrations
(2020).

 Bansal and Tomlin, Deepreach: A Deep Learning Approach to High-dimensional
Reachability (2021).
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